P-91

MOESSBAUER STUDIES OF GRAPHITE INTERCALATION COMPOUNDS OF ANTIMONY CHLORIDEFLUORIDES

Hartmut Mehner and Henry Preiss

Central Institute of Physical Chemistry, Academy of Sciences of the GDR, DDR-1199 Berlin, Rudower Chaussee 5 (G.D.R.)

Graphite reacts with antimony pentahalides to form intercalation compounds with metallic conductivity. There has been a lot of discussions about the chemical species inhabiting the galleries in SbF₅- and SbCl₅-graphite. Recent investigations suggest that SbX₆ and SbX₃ are formed as result of an electron transfer from graphite to the intercalate layers. ¹²¹Sb Mössbauer spectrometry is used for determination the valence state and molecular configuration of Sb in SbCl₄F- and SbCl₂F₃-graphite. Besides SbCl₅-graphite which was synthesized by a soft intercalation technique in CCl₄-solution has been investigated.

The spectra exhibit one strong line which is assigned to Sb^{5+} (>95%). The isomer shift δ_{IS} relative to CaSnO_3 increases by replacing C1 by F in the compounds: $\mathrm{C_xSbCl}_5$ (-2.75 mms⁻¹), $\mathrm{C_xSbCl}_4\mathrm{F}$ (-1.43), $\mathrm{C_xSbCl}_2\mathrm{F}_3$ (+0.12), $\mathrm{C_xSbF}_5$ (+2.06). Relatively high values of quadrupole splitting indicate low symmetry in the intercalated species.

The intercalation compounds show higher isomer shift than the solid halides. This difference may be due to a partial electron transfer and formation of polymeric anions containing halogen bridges.

The amount of Sb³⁺ in the graphite lattice could be increased by annealing a mixture of halides and graphite at 150°C for one week. It is to be assumed that intercalated antimony trihalides originate from thermal decomposition.